Jumat, 03 Februari 2012

teka-teki hidup

sampai saat ini saya belum menemukan arti hidup yang sebenernya, sehingga hidup saya ini terasa sangat tidak berarti.
kapankah saya akan menemukan arti hidup yang sebenarnya???
hidup yang bisa membuat hidup saya ini tidak hambar, dan terasa sangaaaaaat berarti sekali untuk saya dan untuk orang-orang yang ada di sekitar saya.

masa saya harus menyerah dengan semua ini, dengan teka-teki yang belum saya pecahkan ini???
kata-kata itulah yang membuat saya semangat menjalani hidup,ya meskipun belum terasa berarti. tapi, saya akan mencoba dan terus mencoba untuk memecahkan teka-teki ini,supaya hidup saya terasa berarti sekali.

semangat ini akan terus berkobar di dalam dada saya sampai nafas terakhir saya.

Rabu, 28 Desember 2011

GLOBAL WARMING (ENGLISH)

How Much More Will Earth Warm?

To further explore the causes and effects of global warming and to predict future warming, scientists build climate models—computer simulations of the climate system. Climate models are designed to simulate the responses and interactions of the oceans and atmosphere, and to account for changes to the land surface, both natural and human-induced. They comply with fundamental laws of physics—conservation of energy, mass, and momentum—and account for dozens of factors that influence Earth’s climate.
Though the models are complicated, rigorous tests with real-world data hone them into powerful tools that allow scientists to explore our understanding of climate in ways not otherwise possible. By experimenting with the models—removing greenhouse gases emitted by the burning of fossil fuels or changing the intensity of the Sun to see how each influences the climate—scientists use the models to better understand Earth’s current climate and to predict future climate.
The models predict that as the world consumes ever more fossil fuel, greenhouse gas concentrations will continue to rise, and Earth’s average surface temperature will rise with them. Based on a range of plausible emission scenarios, average surface temperatures could rise between 2°C and 6°C by the end of the 21st century.

Model simulations by the Intergovernmental Panel on Climate Change estimate that Earth will warm between two and six degrees Celsius over the next century, depending on how fast carbon dioxide emissions grow. Scenarios that assume that people will burn more and more fossil fuel provide the estimates in the top end of the temperature range, while scenarios that assume that greenhouse gas emissions will grow slowly give lower temperature predictions. The orange line provides an estimate of global temperatures if greenhouse gases stayed at year 2000 levels. (©2007 IPCCWG1 AR-4.)

Climate Feedbacks

Greenhouse gases are only part of the story when it comes to global warming. Changes to one part of the climate system can cause additional changes to the way the planet absorbs or reflects energy. These secondary changes are called climate feedbacks, and they could more than double the amount of warming caused by carbon dioxide alone. The primary feedbacks are due to snow and ice, water vapor, clouds, and the carbon cycle.

Snow and ice

Perhaps the most well known feedback comes from melting snow and ice in the Northern Hemisphere. Warming temperatures are already melting a growing percentage of Arctic sea ice, exposing dark ocean water during the perpetual sunlight of summer. Snow cover on land is also dwindling in many areas. In the absence of snow and ice, these areas go from having bright, sunlight-reflecting surfaces that cool the planet to having dark, sunlight-absorbing surfaces that bring more energy into the Earth system and cause more warming.

Canada’s Athabasca Glacier has been shrinking by about 15 meters per year. In the past 125 years, the glacier has lost half its volume and has retreated more than 1.5 kilometers. As glaciers retreat, sea ice disappears, and snow melts earlier in the spring, the Earth absorbs more sunlight than it would if the reflective snow and ice remained. (Photograph ©2005 Hugh Saxby.)

Water Vapor

The largest feedback is water vapor. Water vapor is a strong greenhouse gas. In fact, because of its abundance in the atmosphere, water vapor causes about two-thirds of greenhouse warming, a key factor in keeping temperatures in the habitable range on Earth. But as temperatures warm, more water vapor evaporates from the surface into the atmosphere, where it can cause temperatures to climb further.
The question that scientists ask is, how much water vapor will be in the atmosphere in a warming world? The atmosphere currently has an average equilibrium or balance between water vapor concentration and temperature. As temperatures warm, the atmosphere becomes capable of containing more water vapor, and so water vapor concentrations go up to regain equilibrium. Will that trend hold as temperatures continue to warm?
The amount of water vapor that enters the atmosphere ultimately determines how much additional warming will occur due to the water vapor feedback. The atmosphere responds quickly to the water vapor feedback. So far, most of the atmosphere has maintained a near constant balance between temperature and water vapor concentration as temperatures have gone up in recent decades. If this trend continues, and many models say that it will, water vapor has the capacity to double the warming caused by carbon dioxide alone.

Clouds

Closely related to the water vapor feedback is the cloud feedback. Clouds cause cooling by reflecting solar energy, but they also cause warming by absorbing infrared energy (like greenhouse gases) from the surface when they are over areas that are warmer than they are. In our current climate, clouds have a cooling effect overall, but that could change in a warmer environment.

Clouds can both cool the planet (by reflecting visible light from the sun) and warm the planet (by absorbing heat radiation emitted by the surface). On balance, clouds slightly cool the Earth. (NASA Astronaut PhotographSTS31-E-9552 courtesy Johnson space Center Earth Observations Lab.)
If clouds become brighter, or the geographical extent of bright clouds expands, they will tend to cool Earth’s surface. Clouds can become brighter if more moisture converges in a particular region or if more fine particles (aerosols) enter the air. If fewer bright clouds form, it will contribute to warming from the cloud feedback.
See Ship Tracks South of Alaska to learn how aerosols can make clouds brighter.
Clouds, like greenhouse gases, also absorb and re-emit infrared energy. Low, warm clouds emit more energy than high, cold clouds. However, in many parts of the world, energy emitted by low clouds can be absorbed by the abundant water vapor above them. Further, low clouds often have nearly the same temperatures as the Earth’s surface, and so emit similar amounts of infrared energy. In a world without low clouds, the amount of emitted infrared energy escaping to space would not be too different from a world with low clouds.

Clouds emit thermal infrared (heat) radiation in proportion to their temperature, which is related to altitude. This image shows the Western Hemisphere in the thermal infrared. Warm ocean and land surface areas are white and light gray; cool, low-level clouds are medium gray; and cold, high-altitude clouds are dark gray and black. (NASA image courtesy GOES Project Science.)
High cold clouds, however, form in a part of the atmosphere where energy-absorbing water vapor is scarce. These clouds trap (absorb) energy coming from the lower atmosphere, and emit little energy to space because of their frigid temperatures. In a world with high clouds, a significant amount of energy that would otherwise escape to space is captured in the atmosphere. As a result, global temperatures are higher than in a world without high clouds.
If warmer temperatures result in a greater amount of high clouds, then less infrared energy will be emitted to space. In other words, more high clouds would enhance the greenhouse effect, reducing the Earth’s capability to cool and causing temperatures to warm.
See Clouds and Radiation for a more complete description.
Scientists aren’t entirely sure where and to what degree clouds will end up amplifying or moderating warming, but most climate models predict a slight overall positive feedback or amplification of warming due to a reduction in low cloud cover. A recent observational study found that fewer low, dense clouds formed over a region in the Pacific Ocean when temperatures warmed, suggesting a positive cloud feedback in this region as the models predicted. Such direct observational evidence is limited, however, and clouds remain the biggest source of uncertainty--apart from human choices to control greenhouse gases—in predicting how much the climate will change.

The Carbon Cycle

Increased atmospheric carbon dioxide concentrations and warming temperatures are causing changes in the Earth’s natural carbon cycle that also can feedback on atmospheric carbon dioxide concentration. For now, primarily ocean water, and to some extent ecosystems on land, are taking up about half of our fossil fuel and biomass burning emissions. This behavior slows global warming by decreasing the rate of atmospheric carbon dioxide increase, but that trend may not continue. Warmer ocean waters will hold less dissolved carbon, leaving more in the atmosphere.

About half the carbon dioxide emitted into the air from burning fossil fuels dissolves in the ocean. This map shows the total amount of human-made carbon dioxide in ocean water from the surface to the sea floor. Blue areas have low amounts, while yellow regions are rich in anthropogenic carbon dioxide. High amounts occur where currents carry the carbon-dioxide-rich surface water into the ocean depths. (Map adapted from Sabine et al., 2004.)
See The Ocean’s Carbon Balance on the Earth Observatory.
On land, changes in the carbon cycle are more complicated. Under a warmer climate, soils, especially thawing Arctic tundra, could release trapped carbon dioxide or methane to the atmosphere. Increased fire frequency and insect infestations also release more carbon as trees burn or die and decay.
On the other hand, extra carbon dioxide can stimulate plant growth in some ecosystems, allowing these plants to take additional carbon out of the atmosphere. However, this effect may be reduced when plant growth is limited by water, nitrogen, and temperature. This effect may also diminish as carbon dioxide increases to levels that become saturating for photosynthesis. Because of these complications, it is not clear how much additional carbon dioxide plants can take out of the atmosphere and how long they could continue to do so.
The impact of climate change on the land carbon cycle is extremely complex, but on balance, land carbon sinks will become less efficientas plants reach saturation, where they can no longer take up additional carbon dioxide, and other limitations on growth occur, and as land starts to add more carbon to the atmosphere from warming soil, fires, and insect infestations. This will result in a faster increase in atmospheric carbon dioxide and more rapid global warming. In some climate models, carbon cycle feedbacks from both land and ocean add more than a degree Celsius to global temperatures by 2100.

Emission Scenarios

Scientists predict the range of likely temperature increase by running many possible future scenarios through climate models. Although some of the uncertainty in climate forecasts comes from imperfect knowledge of climate feedbacks, the most significant source of uncertainty in these predictions is that scientists don’t know what choices people will make to control greenhouse gas emissions.
The higher estimates are made on the assumption that the entire world will continue using more and more fossil fuel per capita, a scenario scientists call “business-as-usual.” More modest estimates come from scenarios in which environmentally friendly technologies such as fuel cells, solar panels, and wind energy replace much of today’s fossil fuel combustion.
It takes decades to centuries for Earth to fully react to increases in greenhouse gases. Carbon dioxide, among other greenhouse gases, will remain in the atmosphere long after emissions are reduced, contributing to continuing warming. In addition, as Earth has warmed, much of the excess energy has gone into heating the upper layers of the ocean. Like a hot water bottle on a cold night, the heated ocean will continue warming the lower atmosphere well after greenhouse gases have stopped increasing.
These considerations mean that people won’t immediately see the impact of reduced greenhouse gas emissions. Even if greenhouse gas concentrations stabilized today, the planet would continue to warm by about 0.6°C over the next century because of greenhouses gases already in the atmosphere.








GLOBAL WARMING(INDONESIA)


Berapa Banyak Lagi Akankah Bumi Hangat?Untuk lebih mengeksplorasi penyebab dan dampak pemanasan global dan untuk memprediksi pemanasan masa depan, para ilmuwan membangun model iklim-simulasi komputer dari sistem iklim. Model iklim yang dirancang untuk mensimulasikan tanggapan dan interaksi lautan dan atmosfer, dan untuk memperhitungkan perubahan ke permukaan tanah, baik alam dan manusia-induksi.Mereka mematuhi hukum-hukum dasar fisika-konservasi energi, massa, dan momentum-dan account untuk puluhan faktor yang mempengaruhi iklim bumi.Meskipun model yang rumit, tes ketat dengan data dunia nyata mengasah mereka menjadi alat yang kuat yang memungkinkan para ilmuwan untuk mengeksplorasi pemahaman kita tentang iklim dengan cara yang tidak dinyatakan mungkin. Dengan bereksperimen dengan model-menghapus gas rumah kaca yang dipancarkan oleh pembakaran bahan bakar fosil atau mengubah intensitas Matahari untuk melihat bagaimana masing-masing mempengaruhi iklim ilmuwan menggunakan model untuk memahami lebih baik iklim saat ini Bumi dan untuk memprediksi iklim di masa depan.Model memprediksi bahwa dunia ini mengkonsumsi bahan bakar yang lebih fosil, konsentrasi gas rumah kaca akan terus meningkat, dan suhu permukaan rata-rata bumi akan meningkat dengan mereka. Berdasarkan berbagai skenario emisi yang masuk akal, suhu permukaan rata-rata dapat meningkat antara 2 ° C dan 6 ° C di akhir abad ke-21.
Model simulasi oleh Panel Antarpemerintah tentang Perubahan Iklim memperkirakan bahwa Bumi akan hangat antara dua dan enam derajat Celsius selama abad berikutnya, tergantung pada seberapa cepat emisi karbon dioksida tumbuh. Skenario yang mengasumsikan bahwa orang akan membakar bahan bakar lebih banyak dan lebih fosil memberikan perkiraan di ujung atas kisaran suhu, sementara skenario yang mengasumsikan bahwa emisi gas rumah kaca akan tumbuh perlahan-lahan memberikan prediksi suhu yang lebih rendah. Garis oranye memberikan perkiraan suhu global jika gas rumah kaca pada tahun 2000 tinggal tingkat. (© 2007 IPCCWG1 AR-4.)Masukan IklimGas rumah kaca hanya bagian dari cerita ketika datang ke pemanasan global.Perubahan salah satu bagian dari sistem iklim dapat menyebabkan perubahan tambahan dengan cara planet menyerap atau mencerminkan energi. Perubahan sekunder ini disebut masukan iklim, dan mereka bisa lebih dari dua kali lipat jumlah pemanasan yang disebabkan oleh karbon dioksida saja. Masukan utama adalah karena salju dan es, uap air, awan, dan siklus karbon.Salju dan esMungkin umpan balik yang paling terkenal berasal dari pencairan salju dan es di belahan bumi utara. Pemanasan suhu sudah mencair persentase tumbuh es laut Arktik, mengekspos air laut yang gelap selama musim panas sinar matahari terus-menerus. Salju penutup tanah juga berkurang di banyak daerah. Dengan tidak adanya salju dan es, daerah-daerah pergi dari memiliki cerah, sinar matahari-mencerminkan permukaan yang mendinginkan planet untuk memiliki gelap, sinar matahari-menyerap permukaan yang membawa lebih banyak energi ke dalam sistem Bumi dan menyebabkan pemanasan lebih.
Athabasca Glacier Kanada telah menyusut sekitar 15 meter per tahun. Dalam 125 tahun terakhir, gletser telah kehilangan setengah volume dan telah mundur lebih dari 1,5 kilometer. Sebagai mundur gletser, es laut menghilang, dan salju mencair lebih awal di musim semi, Bumi menyerap lebih banyak sinar matahari dari itu akan jika salju dan es tetap reflektif. (Foto © 2005 Hugh Saxby.)Uap airUmpan balik terbesar adalah uap air. Uap air merupakan gas rumah kaca yang kuat. Bahkan, karena kelimpahan di atmosfer, uap air menyebabkan sekitar dua pertiga dari pemanasan rumah kaca, faktor kunci dalam menjaga suhu dalam kisaran dihuni di Bumi. Tapi seperti suhu hangat, lebih banyak uap air menguap dari permukaan ke atmosfer, di mana ia dapat menyebabkan suhu naik lebih lanjut.Pertanyaan yang ilmuwan tanyakan adalah, berapa banyak uap air akan berada di atmosfer dalam dunia pemanasan? Suasana saat ini memiliki keseimbangan rata-rata atau keseimbangan antara konsentrasi uap air dan suhu. Karena suhu yang hangat, suasana menjadi mampu mengandung lebih banyak uap air, dan uap air konsentrasi pergi untuk mendapatkan kembali keseimbangan. Apakah tren yang terus karena suhu terus hangat?Jumlah uap air yang memasuki atmosfer pada akhirnya menentukan berapa banyak pemanasan tambahan akan terjadi karena umpan balik uap air. Suasana merespon dengan cepat dengan umpan balik uap air. Sejauh ini, sebagian besar atmosfer telah mempertahankan keseimbangan konstan dekat antara suhu dan konsentrasi uap air sebagai suhu telah meningkat dalam beberapa dekade terakhir. Jika tren ini berlanjut, dan model banyak yang mengatakan bahwa hal itu akan, uap air memiliki kapasitas untuk melipatgandakan pemanasan yang disebabkan oleh karbon dioksida saja.Awan-awanErat terkait dengan umpan balik uap air adalah umpan balik awan. Awan menyebabkan pendinginan dengan merefleksikan energi surya, tetapi mereka juga menyebabkan pemanasan dengan menyerap energi infra merah (seperti gas rumah kaca) dari permukaan ketika mereka di daerah yang hangat dari mereka. Dalam iklim saat ini kami, awan memiliki efek pendinginan secara keseluruhan, tapi itu bisa berubah dalam lingkungan hangat.
Awan bisa baik mendinginkan planet (dengan merefleksikan cahaya dari matahari) dan hangat planet (dengan menyerap radiasi panas yang dipancarkan oleh permukaan). Pada keseimbangan, awan sedikit dingin Bumi. (Astronaut NASA PhotographSTS31-E-9552 milik Johnson ruang Pusat Pengamatan Bumi Lab.)Jika awan menjadi lebih cerah, atau luasnya geografis awan cerah mengembang, mereka akan cenderung untuk mendinginkan permukaan bumi. Awan bisa menjadi lebih cerah jika konvergen lebih banyak uap air di wilayah tertentu atau jika partikel-partikel halus lebih (aerosol) masuk udara. Jika awan cerah sedikit bentuk, akan berkontribusi terhadap pemanasan dari umpan balik awan.Lihat Trek Kapal Selatan Alaska untuk belajar bagaimana aerosol dapat membuat awan cerah.Awan, seperti gas rumah kaca, juga menyerap dan memancarkan kembali energi inframerah. Rendah, awan hangat memancarkan energi lebih dari yang tinggi, awan dingin. Namun, di banyak bagian dunia, energi yang dipancarkan oleh awan rendah dapat diserap oleh uap air yang berlimpah atas mereka. Selanjutnya, awan rendah sering memiliki hampir sama dengan suhu permukaan bumi, dan memancarkan sejumlah energi infra merah yang sama. Dalam dunia tanpa awan rendah, jumlah energi infra merah yang dipancarkan melarikan diri ke ruang angkasa tidak akan terlalu berbeda dari dunia dengan awan rendah.
Awan memancarkan inframerah termal (panas) radiasi sebanding dengan suhu mereka, yang berhubungan dengan ketinggian. Gambar ini menunjukkan belahan bumi Barat di inframerah termal. Laut yang hangat dan daerah permukaan tanah berwarna putih dan cahaya abu-abu; keren, tingkat rendah awan menengah abu-abu; dan dingin, tinggi ketinggian awan abu-abu gelap dan hitam. (Courtesy citra NASA GOES Sains Proyek.)Awan dingin yang tinggi, bagaimanapun, terbentuk dalam bagian dari atmosfer di mana energi-menyerap uap air langka. Ini perangkap awan (menyerap) energi yang berasal dari atmosfer yang lebih rendah, dan memancarkan energi sedikit ruang karena suhu dingin mereka. Di dunia dengan awan tinggi, sejumlah besar energi yang dinyatakan akan melarikan diri ke ruang ditangkap di atmosfer. Akibatnya, suhu global lebih tinggi daripada di dunia tanpa awan tinggi.Jika suhu lebih hangat mengakibatkan sejumlah besar awan tinggi, energi kemudian sedikit inframerah akan dipancarkan ke ruang angkasa. Dengan kata lain, awan lebih tinggi akan meningkatkan efek rumah kaca, mengurangi kemampuan bumi untuk mendinginkan dan menyebabkan temperatur hangat.Lihat Awan dan Radiasi untuk penjelasan lebih lengkap.Para ilmuwan tidak sepenuhnya yakin di mana dan untuk apa gelar awan akan berakhir memperkuat atau moderat pemanasan, tetapi model iklim yang paling memprediksi sedikit umpan balik positif secara keseluruhan atau amplifikasi pemanasan akibat pengurangan awan rendah. Suatu studi observasi terbaru menemukan bahwa lebih sedikit rendah, awan padat terbentuk atas wilayah di Samudera Pasifik ketika suhu hangat, menunjukkan umpan balik awan positif di wilayah ini sebagai model prediksi. Bukti pengamatan tersebut langsung terbatas, bagaimanapun, dan awan tetap menjadi sumber ketidakpastian terbesar - terlepas dari pilihan manusia untuk mengendalikan gas-di dalam rumah kaca memprediksi berapa banyak iklim akan berubah.Siklus KarbonPeningkatan konsentrasi karbon dioksida atmosfer dan suhu pemanasan yang menyebabkan perubahan siklus karbon alami Bumi yang juga dapat umpan balik pada konsentrasi karbon dioksida di atmosfer. Untuk saat ini, terutama air laut, dan untuk beberapa ekosistem batas di darat, yang mengambil sekitar setengah dari bahan bakar fosil dan emisi pembakaran biomassa. Perilaku ini memperlambat pemanasan global dengan mengurangi laju peningkatan karbon dioksida atmosfer, tapi tren yang tidak dapat terus. Perairan laut hangat akan terus karbon kurang terlarut, meninggalkan lebih di atmosfer.
Sekitar setengah karbon dioksida yang dipancarkan ke udara dari pembakaran bahan bakar fosil larut di laut. Peta ini menunjukkan jumlah total manusia-membuat karbon dioksida dalam air laut dari permukaan ke dasar laut. Daerah biru memiliki jumlah rendah, sementara daerah kuning kaya karbon dioksida antropogenik.Jumlah tinggi terjadi di mana arus membawa karbon-dioksida yang kaya air permukaan ke kedalaman laut. (Peta diadaptasi dari Sabine dkk, 2004..)Lihat Saldo Karbon Samudra di Observatorium Bumi.Di darat, perubahan dalam siklus karbon yang lebih rumit. Di bawah tanah iklim yang lebih hangat, terutama pencairan tundra Arktik, dapat melepaskan karbon dioksida terperangkap atau metana ke atmosfer. Peningkatan frekuensi dan api infestasi serangga juga melepaskan lebih banyak karbon sebagai pohon terbakar atau mati dan membusuk.Di sisi lain, karbon dioksida ekstra dapat merangsang pertumbuhan tanaman di beberapa ekosistem, yang memungkinkan tanaman ini untuk mengambil karbon tambahan dari atmosfer. Namun, efek ini dapat dikurangi bila pertumbuhan tanaman dibatasi oleh air, nitrogen, dan suhu. Efek ini juga dapat mengurangi karbon dioksida meningkat ke tingkat yang menjadi jenuh untuk fotosintesis. Karena komplikasi ini, tidak jelas berapa banyak tanaman karbon tambahan dioksida dapat mengambil keluar dari atmosfer dan berapa lama mereka bisa terus melakukannya.Dampak perubahan iklim terhadap siklus karbon tanah sangat kompleks, tetapi pada keseimbangan, tanah penyerap karbon akan menjadi tanaman efficientas kurang mencapai saturasi, di mana mereka tidak bisa lagi mengambil karbon dioksida tambahan, dan keterbatasan lainnya pada pertumbuhan terjadi, dan karena tanah mulai menambahkan lebih banyak karbon ke atmosfer dari tanah pemanasan, kebakaran, dan infestasi serangga. Hal ini akan mengakibatkan peningkatan cepat dalam karbon dioksida atmosfer dan pemanasan global yang lebih cepat. Pada beberapa model iklim, siklus karbon masukan dari kedua daratan dan lautan menambahkan lebih dari derajat Celcius untuk suhu global pada tahun 2100.Skenario EmisiPara ilmuwan memprediksi berbagai kemungkinan kenaikan suhu dengan menjalankan banyak skenario masa depan mungkin melalui model iklim. Meskipun beberapa dari ketidakpastian dalam prakiraan iklim datang dari pengetahuan yang tidak sempurna dari umpan balik iklim, sumber yang paling signifikan dari ketidakpastian dalam prediksi ini adalah bahwa para ilmuwan tidak tahu apa yang orang akan membuat pilihan untuk mengontrol emisi gas rumah kaca.Perkiraan yang lebih tinggi yang dibuat berdasarkan asumsi bahwa seluruh dunia akan terus menggunakan bahan bakar lebih banyak dan lebih fosil per kapita, seorang ilmuwan skenario sebut "bisnis-seperti-biasa." Perkiraan Lebih sederhana datang dari skenario di mana teknologi ramah lingkungan seperti sel bahan bakar , panel surya, dan energi angin banyak menggantikan pembakaran bahan bakar fosil saat ini.Dibutuhkan puluhan tahun untuk berabad-abad untuk Bumi untuk sepenuhnya bereaksi terhadap peningkatan gas rumah kaca. Karbon dioksida, gas rumah kaca antara lain, akan tetap di atmosfer lama setelah dikurangi emisi, berkontribusi terhadap pemanasan berkelanjutan. Selain itu, Bumi telah menghangat, banyak kelebihan energi telah pergi ke pemanasan lapisan atas laut. Seperti botol air panas di malam yang dingin, lautan dipanaskan akan terus pemanasan atmosfer yang lebih rendah baik setelah gas rumah kaca telah berhenti meningkat.Pertimbangan-pertimbangan ini berarti bahwa orang tidak akan segera melihat dampak dari emisi gas rumah kaca berkurang. Bahkan jika konsentrasi gas rumah kaca stabil hari ini, planet ini akan terus menghangat sekitar 0,6 ° C selama abad berikutnya karena gas rumah kaca yang sudah di atmosfer.

Minggu, 25 Desember 2011

logo kampus stkip pasundan cimahi

EDUCATION IN INDONESIA VIEWED FROM SCIENCE EDUCATION PHILOSOPHY


A. INTRODUCTION
Indonesian national philosophy of Pancasila is with the understanding that most simple to understand aspects of national life based on Pancasila, a good education one of them, This is the essence of
philosophy of education.
Relevance and tolerance in philosophy. So, most importantly how seeking an adjustment between the various different educational philosophy, according with the idea that Pancasila is the philosophy of life that is open.
The question is how far Indonesia has fulfilled the educational Pancasila philosophy these rules? According Sadulloh Uyo (2003): "The goal is to continue the education and cultural heritage historical heritage through the core of knowledge accumulated and has survived within the old. Besides being the cultural heritage, educational purposes essentialism is to prepare people for life. "When trying to look at education in Indonesia in the sense of purpose, then there are still many weaknesses here and there. In the sense of educational output. Not infrequently we hear the events that often damage the interests of either the public or the grass root at elite class. Our environment which began imitating foreign culture both in terms of behavior and lifestyle. Crime occurred everywhere as if we are only as educational institutions that legitimize someone to gain legitimacy, but not as an institution capable behavior change, as implied by the national education goals us.
Back consider our education with the philosophy of education is important, education is not just as an ivory tower, and not dreamily touched on the aspect of improvement towards a better life as philosophy of our nation. Or we will be left behind and become a nation that remains both morally and in terms of life skills that finally we obtain ranked 109th of 172 countries in UNDP's visibility in its HDI ranking (Human Development Index). Though teachers have no doubt that Indonesia again in their knowledge, why would ultimately be obtained in reality predicate such disgrace? So we're actually a clever but weak in understand the goals and targets in the delivery of science.
B. DISCUSSION
According to the authors, from the problem above, there are several factors why education in Indonesia is not in line between reality with the aim of education:
1. EDUCATION NEED NOT LIMITED TO THE THEORY OF PRACTICE
Theory is important in an education, because the basis of a theory and practice is also contrary practice is a manifestation of a theory, what does it mean? Balance of both is an issue big happens in our educational sphere, Indonesia. The reason is because because human beings become the subject of education is to be the values do not stop at the extent received a scholarship of teaching only. But must live the values that ultimately able to organize behavior based on education outcomes from Several years ago we had failed in the education scale macro and micro scale, look at the efforts the new order when a massive a uniform society in an effort to explore, appreciate and Pancasila practice. During approximately 20 years, known with P4 (appreciation and Implementing Education Pancasila) in entered on society, both through educational institutions and the upgrading, the upgrading? It turned out that ultimately we fail to face the economic crisis in 2007 which eventually ballooned on the multidimensional crisis, national unity broken which finally culminated in 1998 with a lot of sacrifice young people who want change. P4 can not be chain of national unity, this occurs because the theory used as the interests of immortal power and not in practice. People find being strict enough coaching on the other hand did a lot of bureaucracy misappropriation of the meaning of Pancasila.
According to Dr. Langeveld cited Gunning (1955):
"Practice without theory is for idiots and crazy people, while the theory of practice only to those geniuses. " This means that education should not be initiated by the perpetrators who did not
responsible for implementation. In this context educators and that the learner will be losers. As is the case in the Pancasila became spiritual is necessary not only because the teachers do not practice the Pancasila as appropriate.
2. EDUCATION IS NOT SUSTAINABLE
Efforts made in each action is education sustainable. Enterprises that have been made aware of the school or institution environmental education is intertwined with another, namely environmental
community and family. Level of communication between educators with the child learners are still relatively good, but at the school level with the environment families still need to be questioned. So sometimes the family environment less attention to achieving a conscious effort has been made by
school environment. Educational institutions are not limited to a mere formality, will but need to follow up in other environments, so there is no contradiction. It is expected that there are similarities in the print and educate children.
Protégé may just explore its potential in the environment with always get guidance. While there are still a lot of understanding in society that only take place in school education. This is a perception that
finally our education is not sustainable. Therefore unsustainable inconsistencies in the educational process. So will our businesses be aware of this when we are able to understand the philosophy of education.

3. MUST HAVE EDUCATIONAL THEORY VALUE WEIGHTS INDIVIDUAL, SOCIAL AND MORAL
Human phenomena in education is as a fact and mankind as the value of humanity. Every human being has the virtue so that the educational situation has a weighting value of the individual, social and moral.
So education in a practical level is not limited to communication links two directions between educators and students, but in the sense that more in the sense that the child humanity Learners can have the awareness to the value conscious effort to educate himself. It is the duty of teachers in the repacking educational theory in a learning strategy. Creativity will be appear if the love is based on educate their students and are not limited to to carry out their profession. because depart from the human factor namely social sensitivity to educate others with moral approach. it phenomenon or phenomena is why education can not be reduced as symptoms symptoms of social or purely reciprocal communication.

4. EDUCATION MUST BE STERILE FROM POLITICAL CONSPIRACY RULER
Our binoculars for a moment of history, this nation live in the four eras, (1). Era colonialism colonization, (2) new order (3) the old order (4) the reform era. On each era clearly had great political turmoil and
implicated in every room. Both the economic space, education, and development. One example of when the period of colonialism is no separation between the classes indigenous and European nations. indigenous class for the commoners, and europe class designed for the Dutch nobility and the nation. Problem which is considered the simplest and cultural implications for the values
education in Indonesia until now, still a lot of understanding rich people put on a better education better than physical systems and institutions and put the poor at the institute always subsidized by the government as happened in a political conspiracy against education during colonialism.The old order and also the new order also leaves a conspiracy.
Many efforts to violations of democratic freedoms. Silencing occur here and there. There is no criticallity in the community to know about related public policy. One of them with government efforts include materials that are considered beneficial to the rulers school teaching materials. deviation history of the G 30 S / PKI, and the use of symbols Pancasila on the issue of national unity. So that educational institutions are also be a potential mouthpiece for the government in order perpetuate power.
C. CONCLUSION
Those are some issues that can be observed in the problematic of education Indonesia viewed from philosophy of science education. In the context of understanding the other we can not interpret the educational philosophy of education by itself, so that our national education goals as authors referred to above as ivory tower. spritualism untouched on the side. Grapple educational issues, then we should be able to dissect what his philosophy, which educational philosophy course. So down to earth and became the spirit of education in every room of this nation's life Education should be something the whole education. No other to defend human values and lead levels a better life. Far from being of interest.